[关键词]
[摘要]
粮食产量的历史数据有限,是典型的小样本数据,又由于粮食产量受不确定性因素的影响,是一个复杂的非线性系统,以往的粮食产量时间序列预测模型的阶数采用经验方法或线性方法来确定,得到的预测精度不理想。针对这些问题,可将支持向量机引入到时间序列模型定阶的方法中,然后采用留一法交叉验证寻找最优参数,建立一个多输入、单输出的预测模型。通过对中国粮食产量进行仿真实验,并与一次滑动平均、ARIMA、LS_SVM和RBF神经网络的预测模型作比较来验证模型的有效性,结果表明该模型具有较高的预测精度和较强的泛化能力,证明了该模型对近期粮食产量的预测是可靠的。
[Key word]
[Abstract]
[中图分类号]
F323.5
[基金项目]